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Galileo’s insight into the parabolic shape of projectile trajectories is com-
monly considered not only as having provided a major turning point in the
history of ballistics, but also as having constituted a fundamental step
towards the establishment of classical mechanics. In fact, from a modern
perspective, the parabolic trajectory is closely associated with three of the
most fundamental principles of classical mechanics, the law of inertia, the
law of fall, and the superposition of motions without interference.

Fig. 1: Construction of a projectile trajectory in classical mechanics.

According to classical mechanics, the projectile trajectory results from a
composition of two motions, an inertial motion along the line of the shot,
and the accelerated motion of free fall vertically downwards. Given the
knowledge of the laws governing these two fundamental kinds of motion,
points on the trajectory can be geometrically constructed by considering the
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distances traversed by the two motions in equal intervals of time. Figure 1
illustrates such a construction. To represent the uniform inertial motion
along the line of the shot, equidistant points are plotted on the oblique line,
marking the distances traversed in equal intervals of time. From these
points, the distances the mobile traverses in free fall in the time that has
passed since the beginning of the shot are measured vertically downwards.
Since the space traversed in free fall grows quadratically in time, these dis-
tances increase according to the sequence of square numbers: 1, 4, 9, etc.
The resulting points mark the actual positions of the projectile after equal
intervals of time. The trajectory, represented as a dotted line in Figure 1, is
drawn by joining these construction points smoothly.

This construction appears to be so immediately plausible that one is
tempted to assume that whoever conceives of the projectile trajectory as a
parabola resulting from a composition of two motions, must understand it
in this way and hence also attain the insight into the law of inertia and the
law of fall underlying the construction. Accordingly, the fact that Galileo,
in his late work on mechanics, the Discorsi, formulated a classical result,
namely the parabolic trajectory, is usually understood to imply that he was
already working within the framework of classical mechanics. Even evident
deviations in his works from the reasoning expected according to classical
physics are usually not understood as indicating that Galileo’s arguments
were actually not rooted in the framework of that science.

An example of such a deviation is provided by a striking gap in the
deductive structure of the Discorsi, the major work on mechanics of the
mature Galileo, after all. Galileo derives the form of the projectile trajecto-
ry only in the case of horizontal projection, by composing the horizontal
component with the vertical motion of fall –precisely according to the con-
struction presented above. For the case of oblique projection, however, he
just states that the resulting trajectory would likewise be a parabola, with-
out offering any proof for this statement.1 In the light of the fact that, in
classical mechanics, the trajectory of oblique projection follows from the
same construction as that for horizontal projection, this omission is hard to
understand. In classical mechanics, the case of horizontal projection is, after
all, merely a special case of the more general class of projections in any
direction. However, if one takes into account not only Galileo’s published
works but also the numerous unpublished manuscripts documenting his
ongoing research, one can indeed, as I shall illustrate in the following, iden-
tify clues illuminating why oblique projection represented a problem for
him.
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1 Galileo (1968, Vol. VIII, p. 296) claims, but does not prove, that a bullet shot at a given
angle would traverse the reverse path of a bullet shot horizontally and hitting the ground at
the same angle. The deficiency in Galileo’s argument was already pointed out by Descartes
(1964 ff., Vol. II, p. 387, letter no. 146) in his famous critique of the Discorsi, and later dis-
cussed by Wohlwill, E. 1884, pp. 111 f.



Fig. 2: Construction of a projectile trajectory based on an interpretation of f. 175v,
Galileo MS 72.

Figure 2 illustrates the construction of a projectile trajectory for oblique
motion as can be reconstructed from a drawing found in Galileo’s manu-
scripts.2 In this representation the bullet is projected in the lower left cor-
ner. After being projected it participates in two motions. One is the motion
along the line of the shot, the other is the motion vertically downwards. The
construction thus looks very similar to that of classical mechanics (see Fig-
ure 1). There is, however, one major difference between Galileo’s construc-
tion and that of classical mechanics: the motion along the line of the shot
in Galileo’s construction is not the uniform inertial motion of classical
mechanics. Rather, this motion is decelerated. The spaces traversed along
the oblique line in equal intervals of time decrease in such a way that the
resulting motion behaves like a reversed motion of fall. The motion along
the line of the shot therefore appears to be modeled in analogy to the
motion along an inclined plane. From the perspective of classical mechan-
ics this conception is fallacious. Only in the case of horizontal projection
does the result coincide with that of classical mechanics, since in that case
the inclination of the plane is zero and no deceleration due to gravity
occurs.3

Why did Galileo adhere to such a strange idea? Was he just infatuated
with inclined planes as others claimed he was with circles? And if so, was it
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2 Folio 175v of MS 72, Biblioteca Nazionale, Florence. Naylor (1980, pp. 557–561) was
the first to interpret this drawing as a theoretical analysis of oblique projection. Damerow,
Freudenthal, McLaughlin, and Renn (1992, pp. 206–209) follow Naylor but offer a different
reconstruction of the conceptions underlying the construction. Here, I follow the interpreta-
tion given by the latter.

3 Another example for such a deviation of the reasoning on projectile motion in Galileo’s
work from that expected according to classical mechanics points in the same direction. In the
dialogue part of the Discorsi it is argued that, due to the curvature of the earth’s surface, the
line of the shot would actually have to be considered as inclining even in the case of horizon-
tal projection, so that the motion along this line cannot be uniform. Only the smallness of this
effect is mentioned in order to refute the objection (Galileo, G., 1968, Vol. VIII, pp. 274 f.).
See also Wohlwill, E. 1884, pp. 112 f.



then just a mere coincidence that Galileo treated the case of horizontal pro-
jection correctly and thus hit upon what was to become a key insight of
classical mechanics?

If one conceives of scientific ideas as being merely a product of individ-
ual thinking –great ideas as the product of genius, and lousy ideas as the
product of infatuations that may affect even a genius– virtually no other
explanation remains. However, if one takes into account the shared knowl-
edge on the basis of individual thinking, what at first sight appears to be
merely the individual blunder of a hero of science, may actually become
plausible as an expression of a differently structured body of knowledge.
From this perspective, the emergence of classical mechanics would hence
not have to be explained as being due to an accidental discovery, but could
be accounted for as the result of a transformation of the shared knowledge
underlying also Galileo’s thinking.

Are there any indications that Galileo’s apparently eccentric idea of con-
structing the trajectory of oblique projection by means of an inclined plane
is actually not just an individual idiosyncrasy but strongly suggested by the
shared knowledge of his time, a knowledge possibly structured by other
principles than those of classical physics? Evidently, this question cannot be
answered by looking at Galileo’s work alone, and has, accordingly, been
neglected by Galileo scholars. What did early modern practitioners and the-
oreticians of artillery –Leonardo da Vinci, Giusto Aquilone, Paulus Puch-
ner, Sebastian Münster, Daniel Santbech, William Bourne, Niccolò
Tartaglia, Alessandro Capobianco, Luys Collado, or Diego Uffano, to name
a few– think about projectile motion? Did they each have their distinct 
individual views, or is it possible to recognize structural similarities in their
conceptions, revealing a body of non-classical shared knowledge? A sys-
tematic study of such similarities has hardly begun. Here, I would like to
offer a glimpse at the work on projectile motion of one such contemporary
of Galileo, the English natural philosopher Thomas Harriot, using a recon-
struction of his work from the extant manuscripts.4

Harriot lived from 1560 to 1621. He filled more than 8000 manuscript
pages with notes on various topics of contemporary mathematics, natural
philosophy, and engineering, but did not publish any of his scientific
achievements. Though Harriot eventually became familiar with Galileo’s
astronomical work through the latter’s publications, his work on ballistics
has to be regarded as independent of Galileo’s, no personal contact between
the two being known, and Harriot’s work having been completed long
before Galileo published on ballistics.
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4 A comprehensive reconstruction of Harriot’s work on ballistics is presently carried out
by the author. This contribution refers to a few preliminary results.



Fig 3: Folio 67r, BL Add MS 6789.

One of the folios in Harriot’s manuscripts bearing notes on ballistics is pre-
served as f. 67r, Add MS 6789, in the British Library. On its upper part,
there is a drawing of the curve reproduced in Figure 3. Below this drawing
Harriot noted:5

The species of the line that is made upon the shot of poynt blanke is as is here
described & is a parabola as of the upper randons.

The “shot of point blank” thereby denotes the horizontal shot, while with the
“upper randons” Harriot refers to the shots at an elevation above the horizon-
tal. The trajectory is evidently constructed in the manner previously described,
i.e. by composing motions traversed in equal intervals of time. Along the hori-
zontal, equal distances are marked, thus representing a uniform motion. The
lengths of the verticals obviously represent the motion of fall and grow qua-
dratically as Harriot noted by writing down the numbers 1, 4, 9, and 16.

In short, Harriot’s construction and the accompanying text, which must
have been composed before 1621, the year of his death,6 document his
knowledge of the law of fall and of the parabolic shape of the projectile tra-
jectory to the same extent as is known from Galileo’s Discorsi of 1638. In
the light of this document alone, it would thus seem to be justified to con-
sider Harriot the Galileo of England. Indeed, if only this single document
were known, Harriot could be credited as much as Galileo with the foun-
dation of the classical theory of ballistics.

On closer inspection, however, it turns out that Harriot’s construction
not only produces the same insights but also displays the same weaknesses
as Galileo’s exposition in the Discorsi. In fact, it is only in the case of hori-
zontal projection that the depicted parabola results from Harriot’s con-
struction. On this folio, at least, the parabolic shape of the trajectory for the
case of oblique projection is only claimed but not proven.
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5 British Library Add MS 6789, f. 67r.
6 On the basis of Harriot’s handwriting, Shirley (1983, p. 261) dates these notes to 1607.



While Harriot did not publish on ballistics, he did leave us with many
more manuscripts than Galileo, allowing us to reconstruct how he thought
about oblique projection. In particular, the folio previously mentioned turns
out not to be a disparate fragment, but rather part of a larger group of
folios dealing with projection at arbitrary angles. Let us take a look at
another one.

Fig. 4: Folio 64r, BL Add MS 6789.

The drawing on f. 64r, Add MS 6789, reproduced in Figure 4, illustrates a
shot at an elevation above the horizontal (here at an angle of about 53˚).
The dotted curved line represents the trajectory, the oblique line tangent to
it at its origin represents the line of the shot. From points on this line in
decreasing distances, lines are drawn vertically downwards. The distances
marked on these vertical lines from the line of the shot to the trajectory are
of increasing length. Both, the deceleration of the motion along the line of
the shot, as well as the acceleration of the motion along the vertical, obey a
quadratic law. This suggests that also in Harriot’s case, the motion along the
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line of the shot was conceived in analogy to the motion along an inclined
plane, just as it has been the case in Galileo’s construction.7

It thus seems that the use of the inclined plane in order to construct the
trajectory of oblique projection was not an eccentric idea of Galileo, but
rather a plausible option for anybody who, at that time, attempted to
obtain the projectile trajectory from the composition of the motion along
the line of the shot and the vertical motion of fall.

There is even stronger evidence to support the interpretation that Har-
riot’s construction makes use of the inclined plane. As one can easily see in
Figure 4, there are further construction lines drawn perpendicularly to the
line of the shot, giving rise to triangular structures setting the distances tra-
versed in the motion along the oblique in relation to those traversed along
the vertical. Without going into details of the construction, I would like to
mention that these structures assure that the motion along the oblique does
indeed obey the law of the inclined plane.8

Harriot did not only construct these curves, he also analyzed their math-
ematical character, finding that they are indeed parabolas.9 However, they
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7 Lohne (1979, pp. 236 f.) interprets the deceleration along the oblique occurring in Har-
riot’s trajectories as being due to air resistance. Although Harriot did indeed consider motion
through a medium to be decelerated according to a quadratic law, this interpretation is unten-
able. As I will explain below, the deceleration of the oblique motion depends on the angle of
elevation in a specific way, supporting the interpretation in terms of the inclined plane. In
accordance with his understanding, Lohne interprets the drawing on f. 67r previously dis-
cussed, as representing the trajectory for the case that air resistance is neglected (Lohne, J. A.,
1964, p. 19), obviously ignoring the fact that the folios are related and the drawings on them
illustrate the trajectory for different angles of elevation.

8 The law of the inclined plane states that the acceleration of a motion along the plane
equals sinα times the acceleration of free fall, where α denotes the angle of inclination. That
this law holds in Harriot’s construction can be seen as follows. The distances marked on the
line of the shot by the vertical lines decrease according to the sequence of odd numbers, i.e.
they are 11, 9, 7, 5, 3, and 1 units wide, so that a square law results when adding them up
from above (1, 4, 9, etc.). In addition to this first motion along the line of the shot, Harriot
considers a second one represented by the distances marked on the line of the shot by the lines
perpendicular to the latter. In comparison to the first motion, this second motion is doubly
decelerated, i.e. the spaces traversed in succeeding equal intervals of time are 10, 6, and 2 units,
the double of the last three distances of the first motion. Then the doubly decelerated motion
proceeds downwards again, traversing the same distances in reverse order. The difference of
the spaces traversed by these two motions grows according to a square law as 1, 4, 9, etc., i.e.
exactly as the motion along an inclined plane. Now consider the right triangles having the line
segment representing the differences of the spaces traversed by the two motions as one leg, a
line segment perpendicular to the line of the shot as the other, and a vertical line segment as
the hypotenuse. The lower corners of these triangles are taken to be points on the trajectory,
i.e. the hypotenuses represent the spaces fallen in free fall. But as they are as 1/sinα to the oppo-
site legs representing the distances traversed along the inclined plane, where α denotes the ele-
vation angle, the law of the inclined plane is satisfied.

9 Besides many folios documenting Harriot’s attempts at such a proof, f. 69r, BL Add MS
6789 bears the ultimate proof. For a transcription of this folio, see Lohne, J. A., 1979,
pp. 258 f.



are tilted at an angle depending on the elevation of the shot.10 Furthermore,
Harriot used the composition of motions involving the inclined plane to
solve problems that Galileo was also concerned with. In particular, like
Galileo, Harriot was interested in solving the “gunner’s question” of how
the range of a shot depends on the gun’s angle of elevation. Now, consist-
ently applying the construction just explained to shots at different angles, a
plausible answer to the gunner’s problem may indeed be found.

Fig. 5: Folio 216v, BL Add MS 6788.

Consider the drawing reproduced in Figure 5. There are five trajectories
drawn at the angles of 15, 30, 45, 60 and 75 degrees. They differ in their
appearance, particularly as regards the range of a shot. At first sight it is not
clear how these trajectories were obtained since no construction lines are
visible. On illuminating the folio with raking light, however, an abundance
of construction lines carved into the paper but not drawn in ink become vis-
ible, some of which are redrawn in Figure 6. On closer analysis these lines
reveal that the basic construction principles for all five trajectories are
exactly those previously outlined.11
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10 The tilting angle β is given by tanβ = sinαsinβ/(1+sin2α), where α denotes the elevation
angle; see Lohne, J. A., 1979, p. 238. 

11 Although the resulting curves obey the same principles as those on f. 64r, BL Add MS
6789, their actual construction is different. In Figure 6 there are four obliques representing the
line of the shot for the respective elevations and one vertical. The concentric circles divide these
lines into equal sections. The intersection points would thus represent a uniform motion. On
the vertical line, the distances a body falls in a given time are measured from these intersection
points downwards and marked with horizontal bars. From the first intersection point begin-
ning from below, the distance a body falls in one interval of time is measured, from the second
point that fallen in two intervals of time, and so on. Accordingly, these distances increase qua-
dratically. The same distances are also measured vertically downwards from the respective
intersection points of the circles with the obliques. From the endpoints of the vertical line seg-
ments thus obtained, a line is drawn perpendicular to the respective line of the shot. The inter-
section point of this perpendicular with the line of the shot marks the position the motion
along the line of the shot reaches in the given time. From this point vertically downwards the
respective distance of fall is laid down. In this way the points on the trajectory are generated.



Fig. 6: Folio 216v, BL Add MS 6788
(construction lines not drawn in ink are represented as thin lines). While in the con-
struction on f. 64r, BL Add MS 6789, the vertical distances were adapted to the
oblique ones in order to satisfy the law of the inclined plane, here the oblique dis-
tances are adapted to the fixed vertical distances of fall, thus allowing for a com-
parison of the trajectories for shots at different angles.
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Obviously, the construction also implies the existence of an elevation
angle of maximum range. Harriot was even able to calculate this angle,
determining the maximum range to be at an elevation of about 27˚55’.12

Not only has Harriot pursued this line of thought further than Galileo,
enabling its various consequences to be studied, Harriot’s manuscripts
also provide an insight into the origins of this conception of projectile
motion.

Fig. 7: Folio 4r, BL Add MS 6789.

Figure 7 shows a drawing from what probably represents an earlier period
of Harriot’s occupation with projectile motion. While the basic idea of the
composition of two motions is the same as in the later constructions, nei-
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12 British Library Add MS 6788, f. 165v.



ther the correct law of fall, nor the law of the inclined plane are actually
applied in the construction. The fact that even the motion along the hori-
zontal is decelerated suggests that it is not the specific idea of an analogy to
the inclined plane that constitutes the basis for this construction. Rather, it
appears to be the natural exhaustion of the violent motion that leads to a
deceleration along the line of the shot. When this violent motion has ceased,
only the natural motion remains and the projectile falls vertically down-
wards, as one can see in Figure 7 in the case of the steepest shot.

This example may serve to illustrate what a more thorough analysis of
numerous extant manuscripts amply confirms: that Harriot’s constructions
of trajectories, and in particular also his construction with the help of an
inclined plane, can be understood as specific implementations of the Aris-
totelian dynamics of violent and natural motion. In fact, from this perspec-
tive, the inclined plane allows to specify in a physically plausible and math-
ematically tractable way the decrease of the violent motion and the way it
depends on the angle of elevation.

As is well known, Galileo –even in his Discorsi– continues to make use
of the concepts of violent and natural motion. While this is normally treat-
ed as nothing but a traditional way of speaking, on the background of the
analysis just given it becomes evident that this has deeper implications: in
fact, the deviations of Galileo’s arguments from classical mechanics become
understandable as the expression of a non-classical conceptual organization
of knowledge that surfaces in the use of this traditional terminology. The
knowledge, which Galileo shared with his contemporaries, is still rooted in
the dynamical conceptions of Aristotle, but also comprises the experiences
accumulated by the practitioners of ballistics, for instance the insight that
there is an angle at which the shots obtain a maximum range.

The analysis of this shared knowledge cannot be covered by this limited
contribution, whose aim is to point to the existence of this knowledge,
which becomes strikingly visible in the remarkable similarities between the
otherwise unrelated work of Harriot and Galileo. These similarities can
hardly be explained by the traditional paradigm of influence and reception
but have to be understood as the outcome of common challenges and
shared means to address them. In short, studying the science of Thomas
Harriot also entails learning about the roots of Galileo’s contributions to
classical mechanics.
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